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ABSTRACT

We analysed the effects of a toroidal magnetic field in the formation of several magnetized
accretion tori, dubbed as ringed accretion discs (RADs), orbiting around one central Kerr
supermassive black hole (SMBH) in active galactic nuclei (AGNs), where both corotating and
counterotating discs are considered. Constraints on tori formation and emergence of RADs
instabilities, accretion on to the central attractor and tori collision emergence, are investigated.
The results of this analysis show that the role of the central BH spin-mass ratio, the magnetic
field and the relative fluid rotation and tori rotation with respect the central BH, are crucial
elements in determining the accretion tori features, providing ultimately evidence of a strict
correlation between SMBH spin, fluid rotation, and magnetic fields in RADs formation and
evolution. More specifically, we proved that magnetic field and discs rotation are in fact strongly
constrained, as tori formation and evolution in RADs depend on the toroidal magnetic fields
parameters. Eventually, this analysis identifies specific classes of tori, for restrict ranges of
magnetic field parameter, that can be observed around some specific SMBHs identified by
their dimensionless spin.

Key words: accretion, accretion discs – black hole physics – MHD.

1 IN T RO D U C T I O N

Magnetic fields are ubiquitous in the Universe, playing a relevant role in the high-energy astrophysics, and being involved in a broad
variety of precesses in several environments, from the early Universe, to solar corona and interstellar medium, or in the Galaxy and galaxy
clusters-formation processes, in Pulsars and Magnestars. In many of these situations, however the exact role and the origin of the magnetic
fields are still to the sorted in a comprehensive picture – see, for example (Balbus & Hawley 1998; Colgate, Li & Pariev 2001; Grasso &
Rubinstein 2001; Balbus 2011; Ryu et al. 2012; Siegel et al. 2013). The magnetic field presence in the galactic black hole (BH) accretion
disc environments is a special and intriguing topic. The scenario envisaged by the special situation of BH accretion, disc formation, with a
conjectured accretion-jet correlation is extremely complex. These issues are in fact still very much debated as often correlated with several
problematic inherent the most profound aspects of the BH physics. In this paper, we explore the toroidal magnetic fields influence in the
accretion tori formation, their configurations especially in the emergence of the accretion phase. More specifically, the analysis focuses on the
magnetized tori orbiting supermassive Kerr black hole (SMBH) in active galactic nuclei (AGNs). An accretion disc is essentially regulated
by the balance of different factors as the gravitational, centrifugal and magnetic components. In this work, we consider clusters of toroidal
(thick disc) configurations centred on a single Kerr BH, and prescribed by barotropic models, for which the time-scale of the dynamical
processes τ dyn (regulated by the gravitational and inertial forces) is much lower than the time-scale of the thermal ones τ therm (heating, cooling
processes and radiation), that is lower than the time-scale of the viscous processes τ ν , or τ dyn � τ therm � τ ν . Consequently, the effects of
strong gravitational fields are generally dominant with respect to the dissipative ones and predominant to determine the systems unstable
phases (Abramowicz & Fragile 2013; Pugliese & Montani 2015). Each torus is then part of the coplanar axis-symmetrical structured toroidal
discs, orbiting in the equatorial plane of a single central Kerr BH, so-called ringed accretion discs (RADs), introduced in Pugliese & Montani
(2015) and detailed in (Pugliese & Stuchlik 2015, 2016a, 2017a,c, 2018). The RADs model follows the possibility that more accretion orbiting
configurations can form around very compact objects in the special environment of the AGNs–BHs and Quasars. Arising from different
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BHs accretion periods and from the host Galaxy life, such configurations can report, in their characteristics, traces of the different periods
during several accretion regimes occurred in the lifetime of non-isolated Kerr BHs (Nixon et al. 2012; Alig et al. 2013; Blanchard et al. 2017;
Pugliese & Stuchlik 2018). During the evolution of BHs in these environments both corotating and counterrotating accretion stages are mixed
during various accretion periods of the attractor life (Lovelace & Chou 1996; Volonteri et al. 2003; Carmona-Loaiza et al. 2015; Dyda et al.
2015), thus RADs tori may be even misaligned (Aly et al. 2015).

From the observational viewpoint, this complex scenario for the lifetime of a BH-accretion discs system, opening eventually a new
field of investigation in Astrophysics, implies a rich and diversified set of phenomena, which may be associated with RADs, reinterpreting
the observations analysed so far in the single-torus framework, in a new interpretive frame represented by the possibility of a multitori
system. Instabilities of such configurations, we expect, may reveal of crucial significance for the high-energy astrophysics related especially
to accretion on to SMBHs, and the extremely energetic phenomena occurring in Quasars and AGNs that could be observable by the planned
X-ray observatory ATHENA1. These configurations can be directly linked to the current models featuring the obscuration of galactic BH
X-ray emission. The radially oscillating tori of the couple could be related to the high-frequency quasi periodic oscillations (QPOs) observed
in non-thermal X-ray emission from compact objects, keeping fingerprint of the discrete radial profile of the couple structure. Moreover,
relatively indistinct excesses of the relativistically broadened emission-line components were predicted, arising in a well-confined radial
distance in the accretion structure originating by a series of episodic accretion events (Schee & Stuchlik 2009, 2013; Karas & Sochora 2010;
Sochora et al. 2011).

Here, the RADs framework has been used to investigate the influence of the magnetic field also in the formation of the single torus, as a
limiting case of the RADs and hence in the formation of the multiple case too, comparing results of this study with the situation in absence
of the magnetic contribution. Differences between these two cases are particularly evident in the unstable phases due to the tori collision and
the accretion. We shall focus on the identification of a possible link between the RAD formation and features, the BH spin and the relative
rotation of the fluids in the RAD, looking for a correlation between two or more of these elements and the presence of a toroidal magnetic
field, especially on emergencies of the instability phases. Particularly, we analyse the situation for a dual-accretion phase when two tori
are both accreting on to Kerr attractors of a special class, defined through the BH dimensionless spin and determined by a special relation
between the tori relative rotation. This special context reveals an interesting scenario in the coupling between magnetic field effects and the
fluid rotation. The choice of a purely azimuthal (toroidal) magnetic field is particularly adapted to the discs symmetries considered here and
largely adopted as initial setup for numerical simulations in several general relativistic magnetohydrodynamic (GRMHD) models sharing
similar symmetries to the RAD considered here (Porth et al. 2017). From the methodological viewpoint, the magnetic field contribution has
been then considered as part of the exact general relativity effective potential functions for both the fluid and RADs. Finally, we used the
exact analytical magnetic field solution widely used and known as the Komissarov solution (Komissarov 2006) – and also (Kovar et al. 2011;
Abramowicz & Fragile 2013; Adamek & Stuchlik 2013; Cremaschini & Stuchlik 2013; Hamersky & Karas 2013; Pugliese & Montani 2013;
Slany et al. 2013; Karas et al. 2014; Fragile & Sadowski 2017; Gimeno-Soler & Font 2017; Porth et al. 2017) for applications in the context
of accretion discs.

The structure of this article is as follows: In Section 2, we introduce the case of perfect fluid tori orbiting a central Kerr BH, and we set up
the model for magnetized torus, discussing the main quantities and notation used throughout this work. Section 3 contains the main results of
our analysis, dealing with the magnetized RAD, by considering first the limiting case of non-magnetized RAD constituted by a couple of tori
orbiting a central Kerr BH, and then we concentrate our attention on the situation where a toroidal magnetic field is for each component of the
RAD system. This section closes with subsection 3.1, where some further considerations on the parameter choice follow and, by considering
an extended range of variation for the magnetic field parameter, we discuss a very special class of RADs tori. In Section 4, we add some
further notes on the RAD instabilities considering also the phenomenological implications and the influence of the toroidal magnetic field in
the system stability. Section 5 traces the conclusions of our investigation and we discuss our results and observational consequences.

2 MAG NETIZED TO RI IN THE K ERR SPACETI ME

We consider toroidal perfect fluids orbiting in the Kerr spacetime background with metric tensor

ds2 = −dt2 + ρ2

�
dr2 + ρ2dθ2 + (r2 + a2) sin2 θdφ2 + 2M

ρ2
r(dt − a sin2 θdφ)2 , (1)

in Boyer–Lindquist (BL) coordinates {t, r, θ , φ}. Here, M is a mass parameter and the specific angular momentum is given as a = J/M,
where J is the total angular momentum of the gravitational source and ρ2 ≡ r2 + a2cos θ2, � ≡ r2 − 2Mr + a2, in the following it will be
also convenient to introduce the quantity σ ≡ sin θ . We will consider the Kerr black hole (BH) case defined by a ∈ ]0, M[, the extreme BH
source a = M, and the non-rotating limiting case a = 0, which is the Schwarzschild static metric. The horizons r− < r+ and the static limit
r+
ε are, respectively,

r± ≡ M ±
√

M2 − a2; r+
ε ≡ M +

√
M2 − a2 cos θ2, (2)

1 http://the-athena-X-ray-observatory.eu/
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it is r+ < r+
ε on the plane θ �= 0 and it is r+

ε = 2M on the equatorial plane θ = π/2. In the region r ∈]r+, r+
ε [ (ergoregion) it is gtt > 0 and

t-BL coordinate becomes spacelike. In this work, we investigate toroidal configurations of a perfect magnetized and non-magnetized fluids
orbiting a Kerr attractor (Abramowicz & Fragile 2013; Pugliese & Montani 2013; Pugliese et al. 2013; Pugliese & Montani 2015). Metric
is independent of φ and t, as consequence of this the covariant components pφ and pt of a particle four momentum are conserved along its
geodesic. Therefore, quantities2

E ≡ −gabξ
a
t pb, L ≡ gabξ

a
φ pb , (3)

are constants of motion, where ξt = ∂t is the Killing field representing the stationarity of the Kerr geometry and ξφ = ∂φ is the rotational
Killing field, the vector ξ t is spacelike in the ergoregion. In general, we may interpret E, for timelike geodesics, as representing the total energy
of the test particle coming from radial infinity, as measured by a static observer at infinity, and L as the angular momentum of the particle.
Furthermore, Kerr metric 1 is invariant under the application of any two different transformations: xa → −xa as one of the coordinates (t, φ) or
the metric parameter a, and the circular geodesic motion is invariant under the mutual transformation of the parameters (a, L) → ( − a, −L).
A consequence of this we can limit the analysis of test particle circular motion to the case of positive values of a, for corotating (L > 0) and
counterrotating (L < 0) orbits. Some notable radii regulate the particle dynamics, namely the marginally circular orbit for timelike particles
r±
γ , the marginally bounded orbit is r±

mbo, and the marginally stable circular orbit is r±
mso with angular momentum and energy (E±.∓L±),

respectively, where ( ± ) is for counterrotating or corotating orbits with respect to the attractor (Pugliese et al. 2011, 2013; Pugliese &
Quevedo 2015). In the case a non-magnetized tori, we may consider a one-specie particle perfect fluid (simple fluid), where

Tab = ( + p)uaub + pgab, (4)

is the fluid energy momentum tensor,  and p are the total energy density and pressure, respectively, as measured by an observer moving
with the fluid. For the symmetries of the problem, we always assume ∂t Q = 0 and ∂ϕ Q = 0, being Q a generic spacetime tensor (we can
refer to this assumption as the condition of ideal hydrodynamics of equilibrium). The timelike flow vector field ua denotes now the fluid
four-velocity. We investigate in this work, in particular, the case of a fluid circular configuration on the fixed plane σ = 1, defined by the
constraint ur = 0, as for the circular test particle motion no motion is assumed in the θ angular direction, which means uθ = 0. We assume
moreover a barotropic equation of state p = p(). While the continuity equation is identically satisfied as consequence of the conditions. The
Euler equation for the pressure p can be written in the non-magnetized case (B = 0) as

∂μp

 + p
= − ∂

∂μ
W + �∂μ�

1 − ��
, W ≡ ln Veff(�), � ≡ L

E
, Veff(�) = ut (5)

where Veff(�) is the effective potential � is the relativistic angular velocity. Assuming the fluid is characterized by the specific angular
momentum � constant (see also Lei et al. 2009), we consider the equation for W : ln(Veff) = c = constant or Veff = K =constant. The
procedure described in the present article borrows from the Boyer theory on the equipressure surfaces applied to a thick torus (Boyer 1956;
Abramowicz & Fragile 2013). The Boyer surfaces of the RAD tori are given by the surfaces of constant pressure or3 �i =constant for i ∈ (p,
, �, �), where it is indeed � = �(�) and �i = �j for i, j ∈ (p, , �, �).

The function Veff(�) in equation (5) is invariant under the mutual transformation of the parameters (a, �) → ( − a, −�), as for the case
of test particle circular orbits we can limit our analysis to positive values of a > 0, for corotating (� > 0) and counterrotating (� < 0) fluids.
More generally, we adopt the notation ( ± ) for counterrotating or corotating matter, respectively. In the RAD system, where a couple (Ca,
Cb) of tori are orbiting in the equatorial plane of a central Kerr BH with specific angular momentum (�a, �b), we need to introduce the concept
of � corotating tori, defined by the condition �a�b > 0, and � counterrotating tori by the relations �a�b < 0, the two � corotating tori can be
both corotating �a > 0 or counterrotating �a < 0 with respect to the central attractor.

In the magnetized case, following Pugliese & Kroon 2012; Pugliese & Montani 2013; Abramowicz & Fragile 2013, we consider an
infinitely conductive plasma where Fabua = 0, and Fab is the Faraday tensor, uaBa = 0, where Ba is the magnetic field and ∂φBa = 0 and
Br = Bθ = 0. As noted in Komissarov (2006), the presence of a magnetic field with a relevant toroidal component can be related to the disc
differential rotation, viewed as a generating mechanism of the magnetic field, for further discussion we refer to Parker 1955; Reyes-Ruiz
& Stepinski 1999; Parker 1970; Yoshizawa, Itoh & Itoh 2003; Komissarov 2006; Montero et al. 2007; Horak & Bursa 2010; Safarzadeh
et al. 2017, while we refer to Abramowicz & Fragile 2013; Adamek & Stuchlik 2013; Hamersky & Karas 2013; Pugliese & Montani 2013;
Karas et al. 2014, where this solution is dealt in detail in the context of accretion discs. The Euler equation for this system has been exactly
integrated for the background spacetime of Schwarzschild and Kerr BHs in (Komissarov 2006; Montero et al. 2007; Horak & Bursa 2010)

2 We adopt the geometrical units c = 1 = G and the ( −, +, +, +) signature, Latin indices run in {0, 1, 2, 3}. The four-velocity satisfy uaua = −1. The
radius r has unit of mass [M], and the angular momentum units of [M]2, the velocities [ut] = [ur] = 1 and [uϕ] = [uθ ] = [M]−1 with [uϕ/ut] = [M]−1 and
[uϕ/ut] = [M]. For the seek of convenience, we always consider the dimensionless energy and effective potential [Veff] = 1 and an angular momentum per unit
of mass [L]/[M] = [M].
3 More generally �Q is the surface Q =constant for any quantity or set of quantities Q.In this models the entropy is constant along the flow. According to
the von Zeipel condition, the surfaces of constant angular velocity � and of constant specific angular momentum � coincide (Abramowicz 1971; Chakrabarti
1990, 1991; Zanotti & Pugliese 2015) and the rotation law � = � (�) is independent of the equation of state (Lei et al. 2009).
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Figure 1. Right panel: constant values of S = S̄, introduced in equation (7) as function of the fluid enthalpy ω and magnetic parameter q (dimensionless
quantities are considered), regions of positive S > 0 and negative values S < 0 are considered. Black thick line is S = 0, arrows mark the increasing values
of S parameters. Left panel: coefficient Sn of (q − 1)n in the expansion of S around q = 1 – see equation (10), the situation for q ≈ 1 and r → ∞, and the
limits S = 1 and S = 0 are shown.

with a magnetic field is

Bφ =
√

2pB

gφφ + 2�gtφ + �2gtt

or alternatively

Bφ =
√

2Mωq
(
gtφgtφ − gttgφφ

)
(q−2)/2Veff(�) (6)

where pB = M (
gtφgtφ − gttgφφ

)
q−1ωq is the magnetic pressure, ω is the fluid enthalpy, q and M are constant; we assume moreover a

barotropic equation of state. equation (5) has been used in second term of equation (6). According to our set-up we introduce a deformed
(magnetized) Paczyński potential function and the Euler equation (5) becomes

∂μW̃ = ∂μ [ln Veff + G] where (7)

(a �= 0) : G(r, θ ) = S (AV 2
eff

)q−1 = S (
gtφgtφ − gttgφφ

)q−1
,

andA ≡ �2gtt + 2�gtφ + gφφ, S ≡ qMωq−1

q − 1

parameter S is sketched in Fig. 1 . We therefore consider the equation for the W̃ ≡ G(r, θ ) + ln(Veff) = K . The toroidal surfaces are obtained
from the equipotential surfaces (Boyer 1956; Pugliese & Montani 2013), where there is

Ṽ 2
eff ≡ V 2

effe
2S(AV 2

eff)q−1 =(
gtφgtφ − gttgφφ

)
exp

(
2S

(
gtφgtφ − gttgφφ

)q−1
)

�2gtt + 2�gtφ + gφφ

= K2. (8)

Potential Ṽ 2
eff, for S = 0 reduces to the effective potential V 2

eff for the non-magnetized case in equation (5). The equipressure surfaces,
K =constant, could be closed, C, determining equilibrium configurations, or open O× (related to ‘proto-jet’ configurations (Pugliese &
Stuchlik 2016a). The special case of cusped C× equipotential surfaces allows for the accretion on to the central BH, due to the Paczynski–
Wiita (PW) hydro-gravitational instability mechanism occurring at the cusp r×, (Paczyński 1980): the outflow of matter through the cusp
occurs due to an instability in the balance of the gravitational and inertial forces and the pressure gradients in the fluid, i.e. a mechanism of
violation of mechanical equilibrium of the tori (Fig. 2). For each torus, the extrema of the effective potential functions fix the centre r�, as
minimum point rmin of the effective potential and the maximum point for the hydrostatic pressure. The inner edge r× of the accreting torus,
when accretion occurs, corresponds to the maximum point rmax of the effective potential, also the minimum point for the hydrostatic pressure.
The inner and outer edges of an equilibrium torus are also strongly constrained. The inner edge of the Boyer surface is at rin ∈ [rmax , rmin ] on
the equatorial plane, while the outer edge is at rout > rmin on the equatorial plane. For a discussion on the definition and location of the inner
edge of the accreting torus see (Bromley et al. 1998; Agol & Krolik 2000; Paczyński 2000; Krolik & Hawley 2002; Abramowicz et al. 2010).

In the following, for any quantity Q and radius r•, we adopt the notation Q• ≡ Q(r•), for example there is �+
mso ≡ �+(r+

mso). Then (1)
for fluid specific angular momentum � in ∓�± ∈ ∓L±

1 ≡ [∓�±
mso, ∓�±

mbo[ topologies (C1, C×) are possible, the C1 indicated a non-accreting
topology C with specific angular momentum � ∈ L1, where r±

× ∈]r±
mbo, r

±
mso], (2) for ∓�± ∈ ∓L±

2 ≡ ∓�± ∈ [∓�±
mbo, ∓�±

γ [ topologies (C2,
O×) are possible, with unstable point r±

j ∈]r±
γ , r±

mbo], and (3) for ∓�± ∈ ∓L±
3 ≡ ∓�± ≡ � ≥ ∓�±

γ only equilibrium torus C3 is possible.

Similarly to the non-magnetized case (where the effective potential is Veff(r; �, a)), the function Ṽeff(r; �, a,S, q) defined in equation (8)
may be regarded as an effective potential function encoding the centrifugal and curvature binding effects of the spacetime together with the
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Figure 2. Density plots. Upper panel: C+
× < C− RAD. Middle panel: C−

× < C− RAD. Bottom panel: RAD C−
× < C+

×. (x, y) are Cartesian coordinates.
Magnetic parameters (q,S), BH spin a/M and fluids specific angular momentum are signed (�).

magnetic pressure force (q), essentially regulated by the S values. Therefore, it is important to discuss the range of variation for the (q,S)
couple. Section 3.1 addresses further considerations on the parameter choice. We note that a negative solution for S may appear for q < 1;
we shall briefly consider also the case of tori in this more general situation in Section 3.1.

Here, we note that, in the limiting case q = 0, the magnetic field B, does not depend on the fluid enthalpy, furthermore equation (8) for
q = 0 is Veff = K, this means that the magnetic field Bφ |q = 0 does not effect the Boyer surfaces.

It is therefore worth to consider some limits, with the coefficient Ṽ 2
eff[n] of Sn in the expansion of Ṽ 2

eff around S = 0:

forS ≈ 0 Ṽ 2
eff[n] = 2n

n!
V 2

eff

(AV 2
eff

)n(q−1)
n ≥ 0, thus Ṽ 2

eff = V 2
eff + 2S (AV 2

eff

)
q

A + O
(S2

)
, (9)

where O( Qκ ) is for terms of the order greater of equal then Qκ for any quantity Q. As S = S(q), we consider therefore the coefficient Sn

of (q − 1)n in the expansion of S around q = 1:

Sn = M lnn(ω)(n + ln(ω) + 1)

�(n + 2)
for n ≥ 0 and q � 1, (10)

where �(x) is the Euler gamma function (Fig. 1). In Section 3, we consider in details the case of two magnetized tori orbiting a Kerr central
BH focusing first on the limiting case of non-magnetized RAD system (S = 0) of the order two, made up by two orbiting tori.

MNRAS 476, 4346–4361 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/476/4/4346/4904140
by Catherine Sharp user
on 02 May 2018



Multi magnetized accreting tori 4351

3 MAG N E T I Z E D R I N G E D AC C R E T I O N D I S C S

We start by solving the equation for the critical points of the function Ṽeff with respect to the fluid specific angular momentum obtaining,
similarly to the non-magnetized case the fluid specific angular momentum �±(r) replaced by the solution �̃±(r) : ∂r Ṽeff = 0, for counterrotating
and corotating magnetized fluids, respectively:

�̃∓ ≡
�

(
a3 + ar

[
4Q(r − M)S�Q + 3r − 4

] ∓
√

r3
[
�2 + 4Q2(r − 1)2rS2�2Q+1 + 2Q(r − 1)2rS�Q+1

])
,

a4 − a2(r − 3)(r − 2)r − (r − 2)r
[
2Q(r − 1)S�Q+1 + (r − 2)2r

]
where there is lim

S→0
�̃∓ = lim

q→1
�̃∓ = �±, (11)

dimensionless quantities r → r/M and a → a/M have been used, see Figs 3 and 4.
We obtained a specific fluid angular momentum expression which explicitly includes the dependence of the field through the S and

q parameters. Then, we note also in equation (11) the explicit dependence of �̃± on the parameter Q = q − 1 (Figs 3 and 4). Limits 11,
furthermore, are consistent with the analysis in equations (9)–(10) for the asymptotic behaviour in the same regions of the parameter space.
Therefore, we can address the comparison with the non-magnetized case by considering the parameters S = 0 or q = 1. Nevertheless before
to consider the effects of toroidal magnetic field it is appropriate to further comment the situation for the non-magnetized RADs (Pugliese &
Stuchlik 2015, 2016a, 2017a).

In the following, we consider specific tori couples or seeds. As specified in Pugliese & Stuchlik (2016a), the study of these configurations
allows both the direct characterization of the system, consisting of only two accretion discs around a central attractor, i.e. a RAD of the order
n = 2, and it also simplifies the analysis of the more general case of multiple toroidal configurations orbiting a single central attractor. The
study of RADs made by more then two orbiting toroidal configurations could be carried out considering composition of seed tori couples.
Therefore, we can concentrate our attention here on two tori with parameters (�i, �o) and (Ki, Ko), for the inner ad outer tori, respectively,
with respect to the central BH say, introducing notation ≶, there is Ci < Co for the relative location of the configurations. The analysis of
multiple toroidal discs can be then further simplified by considering appropriate boundary conditions on a properly defined ‘RAD effective
potential’ which, for a seed, may be defined as follows for a RADs of the order n = 2:

Ṽ C2

eff

∣∣∣
K

≡ Ṽ i
eff�(−Ki)

⋃
Ṽ o

eff�(−Ko), alternately (12)

Ṽ C2

eff ≡ Ṽ i
eff(�i)�(ro� − r)�(r − r+)Ṽ o

eff(�o)�(r − ri�),

where � is the Heaviside (step) function such that for example �( − Ki) = 1 for Ṽ i
eff < Ki and �( − Ki) = 0 for Ṽ i

eff > Ki . Note that we adopt
the notation �̃, for the specific angular momentum in the magnetized case mainly when it is regarded as function of (r; a,S, q)(equation 11);
On the other hand, as when the specific fluid angular momentum is considered as a parameter, for easy of reference, we use simplified notation
�, when not otherwise specified (equation 13).

Preliminary notes on the RADs and the non-magnetized case. In the non-magnetized case, accreting RADs couples may turn in the
following four cases only: (a) C±

× < C±, (b) C+
× < C±, (c) C−

× < C±, and (d) C−
× < C+

×. In the case (a), describing � corotating tori or any
couple around a static (a = 0) attractor, only the inner torus of the couple is accreting on to the central BH. The RADs with an �counterrotating
couples, distinguish three major classes of BH attractors defined by spin ranges with boundaries in geometries characterized by spin a1 ≡
0.4740M, a2 = 0.461854M, and a3 ≡ 0.73688M 4. Couples C±

× < C±, (a), and C−
× < C+, (c), may form in all spacetimes where a ∈ [0, M]

(Pugliese & Stuchlik 2017a). On the other hand, a C−
× < C+

× couple which features a double accretion5, (d)-case, can be observered in all Kerr
geometries a �= 0, but the slower is the BH (a�a1) the lower must be the specific angular momentum �− of the inner corotating torus and the
smaller is the tori spacings. Finally, couples ()+ < C−, where () stays for an accreting (C×) or non-accreting (C) torus, (b), can be observable
in any spacetime a ∈ [0, M], although only around Kerr attractor with a ∈ [0, a2[ the corotating, non-accreting, torus C− approaches the
instability (r× � r−

mso) in the RAD seed. Moreover, the faster is the Kerr attractor (a�a3), the farther away (r� > r−
(γ )) should be the outer

torus to prevent collision (Pugliese & Stuchlik 2017a, 2016a, 2017c). A torus screening effect in this case can occur only with coroting inner
screening non-accreting discs. In fact, an accreting corotating torus must be the inner one of the couple while the outer counterrotating torus
can be non-accreting or in accretion. If there is a C−

× torus, or if the attractor is static, then no inner (corotating or counterrotating) torus can
exist, and then C−

× is part of C−
× < C− couple or of a C−

× < ()+ one. A corotating torus can be the outer of a couple of tori with an inner
counterrotating accreting torus. Then the outer torus may be corotating (non accreting), or counterrotating in accretion or non-accreting. Both
the inner corotating and the outer counterrotating torus of the couple can accrete on to the attractor. A counterrotating torus can therefore

4 The origin of these special spins can be retraced in the geometric properties of the Kerr spacetime and the fluid dynamics, quite independently by the rotational
law (specific angular momentum definition) – for more discussion see (Lei et al. 2009; Pugliese & Stuchlik 2017a,c).
5 We stress that this special seed is particularly interesting, noting that any RADs is to be considered as a geometrically thin accretion disc (Pugliese & Stuchlik
2015). Then only for this special couple a ‘screening’ effect may occure with corotating non-accretion disc between the two accreting tori of the RAD
(Gilli et al. 2007; Marchesi et al. 2016; Masini et al. 2016; DeGraf et al. 2017; Marchesi et al. 2017; Storchi-Bergmann et al. 2017). This mechanim envisages
therefore a special ‘inter-disc’ activity with greater potentiality also in view of a possible jet-accretion correlation – see also Pugliese & Stuchlik (2017a,c,
2018) and (Abramowicz et al. 1978; Kozlowski, Jaroszynsk & Abramowicz 1978; Sikora 1981; Madau 1988; Lyutikov 2009; Lasota et. al 2016; Sadowski
et al. 2016)
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Figure 3. Fluid critical angular momenta �̃±, in equation (11) for magnetized fluid. Limits �± for non-magnetized fluids are also shown, for fixed Kerr BH
spin a ∈ [0, M], magnetic parameters S and q, as function of r/M. The limit of the static Schwarzschild solution for a = 0 (where �± = � and �̃± = �̃) is also
shown.
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Figure 4. Fluid specific angular momenta �̃− (right panel) and �̃+ (left panel) for corotating and counterrotating fluids as function of r/M and magnetic
parameter q. Different values of parameters S are considered.

Figure 5. Function Scrit(r; a, �, q) introduced in equation (13) as function of radius r/M and magnetic parameter q, for fluid specific angular momentum �±
(equation 11) for S±, respectively, according to fluid rotation. The BH spin is a =, fluid specific angular momentum �− = 4.01 and �+ = −4.4, a = 0.382M,
for negative (positive) values of Scrit(r; a, �, q) right panel (left panel). See also Fig. 6.

reach the instability being the inner one of any couple, or the outer torus of an �counterrotating couple. Then it is worth noting that if the
accreting torus is counterrotating with respect to the Kerr attractor, i.e. a C+

×, then there is no inner counterrotating torus, but a couple may
be formed as a C+

× < C± or as a ()− < C+
× one.

We propose here the analysis of the four cases for the magnetized fluids by directly integrating the Euler equations, as in Fig. 2, and
using proper model constraints on the effective potential 12.

The magnetized case . It is convenient to take a closer look at the relation between S and q. The different dependence of �̃+ and �̃−, on
the parameter couple (S, q), is enlighten in Figs 3 and 4.

An important part of our comparative analysis of magnetized and non-magnetized fluids is grounded on the task to verify the presence
of any RAD systems constraints induced by the magnetic field influence, whose presence here is controlled by S and q parameters, and
viceversa to constraint the couple (S, q) according to the RAD characterization. It was therefore necessary to introduce an adapted function
Scrit(r; �, q), whose level surfaces, Scrit(r; �, q) = constant, provide the values of the parameter S, for one or two tori. From the equation for
the critical points of the hydrostatic pressure, we find Scrit(r; �, q) as follows:

Scrit ≡ −�−Q

Q
a2(a − �)2 + 2r2(a − �)(a − 2�) − 4r(a − �)2 − �2r3 + r4

2r(r − 1)
[
r(a2 − �2) + 2(a − �)2 + r3

]
(13)

(with r → r/M and a → a/M) – see Fig. 5. First we note, as in equation (11), the explicit dependence on Q = q − 1, and on the quantities
� ± a–see also discussion in Pugliese & Montani (2015). We note that a negative solution for Scrit may appear also for q > 1, see Fig. 5,
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however we shall briefly consider also tori with q < 1 in section 3.1. More precisely, this function of the radius r, the parameter q, and the
momentum parameter � represents the values of S as a function of r, for which critical points of the function Ṽeff exist. In other words, it
provides indications on the existence of the solutions of the Euler equation, according to our constraints, fixing the radii r� and, eventually,
for unstable phase, the location of r×. The existence of a maximum pressure point r� is sufficient to establish whether a toroidal solution
is possible, while r× envisages the possible deviation of the equilibrium condition from the non-magnetized case, here the surface Scrit = 0.
Thus, by analysing the surfaces Scrit =constant, we are able to assess in quantitative manner the magnetic field influence in the RADs
formation and instability.

We summarize our findings as follows: generally, RADs solutions are possible when the magnetic parameters S and q are balanced in
such a way that their combination remains small enough, i.e. the greater is the q > 1 and the smaller has to be S and viceversa. This fact
can be therefore seen an indication of the possible effects of the magnetic field in the direction of suppressing the formation of equilibrium
magnetized toroidal configurations. It is then interesting to note the emergence of a relation between the field parameter q and the magnitude
S. However, both these constraints and the range of variations for q and S actually depend on the BH spin-to-mass ratio and on the relative
rotation of the orbiting fluids. Remarkably, this analysis has proved also the different behaviour of � counterrotating and � corotating tori
in presence of toroidal magnetic field, which is also particularly evident in range q < 1 considered here in the sideline of this investigation
in Section 3.1 (Fig. 7). Concerning the analysis for q > 1, as clear from Fig. 6, there is Scrit ∈ [0,Smax], that is S is bounded below by
the non-magnetized case and above by a maximum value Smax, which however is not always present – see Fig. 6 second from above. The
situation depends mostly on the relative rotation of the fluids and also from the BH spin. It can be shown that the maximum value Smax

depends linearly on q. A systematic study of the solutions in all the parameters space, which would imply the combined selection of different
ranges of parameters is left here for future investigation; however, we can note that the presence of maximum for Scrit is related to the
presence of instabilities, consequently this study provides also constraints on the emergence of PW instability and on the relevance of the
toroidal magnetic fields contribution in enhancing accretion. Fig. 6 show some exemplary cases. Integrations of Euler equation for a couple
of magnetized tori in fixed spacetimes are in Fig. 2. As mentioned above, these analysis confirm the requirement of small values of qS, it
follows that the magnetic field is strongly constrained by the torus formation: The presence of a strong field in the early age of accretion
disc evolution would act in direction to suppress the torus formation–Fig. 6. Comparing then with the S = 0 case, we see that the instability
points shift away from the central attractor which implies that the magnetic field has essentially, in general, a destabilizing effect on the
configurations, fostering the instability emergence. Then the accreting magnetized tori are generally smaller (equatorial plane elongation)
than the non-magnetized ones. Asymptotically, for large values of r, the parameter S decreases to zero values for q > 1. In particular, this
means that a magnetized torus may form close to the central attractor. Focusing on the � corotating couples, we note that S increases with the
magnitude of � moving the torus and the maximum of S inwardly. This trend is due to the coupling between the centrifugal and the magnetic
field component of the force balance in Euler equation, encoded in the effective potential function Ṽeff in equation (8). The magnetic pressure
in equation (6) is independent from the fluid specific angular momentum �, viceversa the magnetic field Bφ explicitly depends on � through
� in equation (7). The greater is the fluid rotation and the greater is the magnetic field, increasing the maximum Scrit = Smax values and the
radius ri : Scrit(ri) = Smax for the case of S = 0. This behaviour is substantially independent from the sign of rotation with respect to the
central attractor for the corotating and counterrotating couples of � corotating tori, see Fig. 6. Fluid rotation would act therefore so to offset
the effects of the magnetic field. Considering then the � corotating fluids, RADs may form at equal q and S constant lines in Scrit in Figs 5 and
6. This would be an important indication in support of the RADs origin, with constrained angular momentum, from one common embedding
material as envisaged in (Pugliese & Stuchlik 2015, 2016a, 2017a). The magnetic field would act so as to foster the formation of a single
accretion disc, following the emergence of RAD instability originating from each torus unstable phases or from tori collision. It is clear then
that in the � corotating couples, the maximum common value of the parameters S for the tori to be considered is S = Si relative to the inner
torus.

The � counterrotating magnetized fluids constitute a particular interesting case where, for S = 0, couples C+
× < C− and C−

× < C+
×, might

occur. As clear from Fig. 6, the following two cases may occur: (i) there is partial or total overlapping of the curves S− (for the inner torus)
and S+, and in this case the situation for a RAD is analogue to the � corotating case discussed above. (ii) The second case consists of Scrit

curve profiles which are totally disjoint, as in Fig. 6 – third line. In general, in the � counterrotating case, we can assess the different coupling
between the centrifugal component and the magnetic field contribution in the counterrotating and corotating cases respectively (for a �= 0)
(and this is especially clear for the case q < 1, which is also addressed in Section 3.1). The presence of a toroidal magnetic field would
distinguish between corotating and counterrotating fluids, favouring the formation of the first (Volonteri et al. 2003). In the � counterrotating
couples, if there is no maximum Smax the curves are overlapped as they are always in the � corotating case, implying that tori at equal S
and q are always possible, and this may support the possibility of common origin for the tori. In the case of disjointed curves, the common
Scrit parameter would be determined by the external counterrotating torus. This suggests a different origin for the tori of an � counterrotating
couple in the case C− < C+ only (Pugliese & Stuchlik 2017a).

3.1 Some considerations on the parameter choice

In this section, we further discuss the parameter choice focusing on the range of variation for the q-parameter. We have seen from equations
(7–8) and equations (11–13), that the RADs strongly depend on the parameter Q = q − 1. We assumed Q > 0, with Q = 0 matching the
limiting case for null magnetic component. Considering again Euler equation (5), with the effective potential Ṽeff in equation (8) including the
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Figure 6. Left-hand panels: cross-sections, on the equatorial plane, of the outer Boyer surfaces (Roche lobes) for � counterrotating and � corotating tori
orbiting a central Kerr BH (left-hand and bottom panels), and associated Scrit parameter (right-hand panels) as function of r/M – see also equation (13). (x, y)
are Cartesian coordinates. Bottom panels: Scrit(r; a, �, q) > 0 for different values of momentum � ±.

magnetic contribution, we can note that Q parameter in fact defines positive or negative contribution of the magnetic pressure in the pressure-
force balance, together with the barotropic pressure contribution and the centrifugal and gravitational parts, included in the (non-deformed)
effective potential Veff. In here, we briefly discuss results of the analysis performed in this extended parameter ranges considering a negative
Q – see Fig. 7.
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4356 D. Pugliese and G. Montani

Figure 7. Case q ∈ ]0, 1[ (Q < 0): upper and middle panel-lines: the closed Boyer surfaces at K2 and � fixed and associated effective potential (S = 1). Disc
centre r� and critical points r× are also signed. Third line panel: density plot. double accretion configurations appear. Bottom panels: different view of the
effective potential as function of fluid specific angular momentum � and radius r/M. Double minima appear for a restricted region of parameter value � < 0.
(x, y) are Cartesian coordinates. Black region is r < r+, r+ is the BH horizon.

We can clearly see the presence of maxima and of possible negative values (for q < 1) of the parameter6 Q (Fig. 7). The first relevant
feature in this new set-up consists in the possible formation of a multitori where both RAD accretion discs have the same � and K values,
which obviously cannot be in the case of different magnetic parameter values. This implies that each torus is not uniquely defined, in general,
in this range values for the magnetic parameter, by the only fluids rotation � and density K parameters. Moreover, this suggests also that the
same original matter, constituting the primordial embedding of the discs, may probably give rise to two different accretion tori with equal
centrifugal (�), density (K) and magnetic (Q) properties, eventually pointing out an interesting mechanism in the disc formation. The second

6 This special choice of S (M) and q parameters requires a throughout discussion of the matter and fields characteristic as described by these values, and
the implication on the conservation equations, the Komissarov field and, importantly, the RADs components boundary conditions, which are here particularly
relevant as excretion discs may appear. This analysis is left for future investigation. However, without overdeepening this aspect that eludes the purposes of the
present analysis, we can say that a study of the Scrit quantity as in Fig. 5 reveals a far more rich scenario then the cases depicted in Figs 6 and 7; we can consider
the negative Scrit values, defined in equation (13), giving rise to accretion discs or, negative Q, which gives rise to toroidal solutions of Fig. 7 satisfying the
requirement of constant (magnetized) potential.
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relevant difference with respect to the other RADs considered here, consists in the fact that, for the inner torus, so-called excretion phase is
possible. This mechanism of the accretion discs instability is indeed a well known feature of different scenario as in (Slan &Stuchlı́k 2005;
Stuchlik 2005; Stuchlik&Kovar 2008; Stuchlik et al. 2009; Kucáková et al. 2011; Adamek&Stuchlik 2013; Stuchlik et al. 2015). In excretion
discs, the balance of forces is such that the flow starts from the centre of the disc and exits the outer margin (in this sense we could say there
is a role shift between the outer rout and the inner rin edge). Excretion discs form, for example, at stars merging. However, in all the different
circumstances considered in the former studies, a repulsive effect in the force balance appears, generally inherited as a peculiar feature of
the background geometry, therefore enucleated in the gravitational part contribution of the effective potential in the forces balance equation.
In our case, in this extended range of the Q parameter, interestingly, the repulsive effect is in fact introduced directly in the balance of the
forces, due to the magnetic field contribution. These multiple configurations, seen as a very special subgroup of RADs, would emerge for the
counterrotating configurations only. This situation leads us to conjecture that a general classification of balance of forces in tori may be done,
answering to the question of how should be the effective potential modified to envisage such kind of special multitori with equal parameter
values and where excretion processes may occur. Then, the existence of these solutions, will let us to conclude that existence of any excreting
tori in fact may not be exclusively attributed to the effects of a geometric repulsive force, due to a cosmological constant contribution (Slan &
Stuchlı́k 2005; Stuchlik 2005; Stuchlik & Kovar 2008; Stuchlik et al. 2009), to some kind of quantum distortion effects having such impact
on the larger scales (Stuchlik et al. 2015), or the presence of superspinning sources (Stuchlik & Schee 2010; Stuchlik et al. 2011; Adamek &
Stuchlik 2013; Stuchlik & Schee 2013), for example. These orbiting tori may therefore represent more common situations in Astrophysics,
then following assumptions on very special and exotic backgrounds. Particularly, they may be relevant in the early phases (as transient stages)
of the accretion discs formation. This hypothesis encourages for future analysis directed towards the investigations of these cases.

4 N OTES ON THE RAD INSTABILITIES

In this section, we add some further comments on the stability of the RADs configurations constituted by tori endowed with a toroidal
magnetic field. We briefly consider also the possible observational implications associated with the instabilities.

RAD instabilities should be treated in accordance with a global point of view where the macrostructure is considered as a single, unique
disc orbiting around a central SMBH. In the construction of the RAD model, presented in Pugliese & Stuchlik (2015), special attention
has been given to the development of the RAD as an whole, geometrically thin disc. In fact, the current interpretative framework of the
BH-accretion disc physics generally foresees the scenario of a BH-one disc system. Consequently, we should consider the possible situation
of a ‘RAD in disguise’, i.e. a RAD could be observed as a geometrically thin, axis-symmetric disc, centred on the equatorial plane on a Kerr
SMBH, with a ‘knobby’ surface and characterized by a differential rotation with peculiar optical properties. (Optical properties of a couple
of orbiting tori are expected to be investigated in a future work; on the other hand, X-ray emission are expected to shown the ringed structure
in a discrete emission profile – see, for example, Sochora et al. (2011); Karas & Sochora (2010); Schee & Stuchlik (2009, 2013; Stuchlı́k &
Schee 2012; Stuchlı́k, Blaschke & Schee 2017).) It is clear then that the instability of each RAD component must reflect in an inter-RAD
disc activity. More in general, the RAD instabilities have been classified into three main processes: (i) a destabilization of the system may
arise after the emergence an instability phase of one component of the RAD, for example, after an accretion phase of one torus on to the
central BH or the proto-jet emission, which is capable to destabilize the entire disc (Pugliese & Stuchlik 2017b, 2018). This case however
has been strongly constrained. As discussed in Section 3, in any RAD the maximum number of accreting tori is n× = 2, occurring for the
couple C−

× < C+
×, made by an inner corotating and outer counterrotating torus accreting on the BH. (ii) A RAD can be destabilized after

collision of a pair of quiescent tori of the agglomeration. Collision may arise, for example, after growing of one torus Pugliese & Stuchlik
(2017a,c). (iii) In the couple ()− < C+

×, the accretion phase of the outer torus, (i) instability, and the collision emergence, (i i) instability, can
combine establishing a complex phase of RAD destabilization. This situation has been discussed in Pugliese & Stuchlik (2015), where RAD
perturbative approaches have also been described. In Pugliese & Stuchlik (2016a), the emergence of unstable tori have been detailed, while
further discussion on RADs as remnants of AGN accretion periods are in Pugliese & Stuchlik (2018). The particular case of the emergence of
collision for two RAD tori was considered in Pugliese & Stuchlik (2017a). Interacting tori and energetic of associated with these processes
were investigated in Pugliese & Stuchlik (2017c). In this analysis, the energy released during the collision of two adjacent tori, C−

× < C+
×

or C+
× < C±, has been evaluated. The mass accretion rates, the luminosity at the cusps and other fundamental characteristics of the BHs

accretion disc physic were also evaluated. From the phenomenological viewpoint, the shift in paradigm from the interpretative framework
of the BH-disc interaction to the BH-RAD clearly opens a broad scenario of investigation focusing, on one side, on the special phenomena
associated with the RAD instabilities, as the occurrence of double accretion and its after-dynamics, the inter discs proto-jet emission and the
screening tori; on the other side, the RAD model opens the possibility to review the main template of analysis from a SMBH-disc framework
to a SMBH-RAD one. More precisely, concerning the phenomenology connected to the (i), (ii), and (iii) instabilities, the analysis in Pugliese
& Stuchlik (2017c) suggests that such phenomena can be associated with release of high energy emissions. Then from the point of view of
the agglomerate, the collision instability can lead to different evolutive paths for the aggregate tori, depending on the initial conditions of the
processes as the torus rotation with respect to the BH, the range of variation of the mass of the torus and of the magnitude of the specific
angular momentum of the fluids. A possibility consists in the formation of in a single torus, in fact canceling the RAD structure, explaining
mainly in the first evolution phases of the formation of the aggregate. We should also note that, as pointed out in Pugliese & Stuchlik (2017a),
an inner torus of the orbiting RAD couple may form as axially symmetric corotating toroidal disc after a first phase of formation of the outer
aggregate component.
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Conversely, another possibility is the occurrence of a ‘drying-feeding’ phase, involving interrupted stages of accretion of one or two tori
of a couple. In this case, matter flows between the two tori of the couple, accretion being interspersed with equilibrium phases, eventually
giving raise to a series of interrupted stages of accretion on to the central SMBH. This particular effect, considered in Pugliese & Stuchlik
(2017a, 2018) and detailed in Pugliese & Stuchlik (2017c) can represent a fitting environment for the different phases of super-Eddington
accretion advocated as a mechanism to explain the large masses observed in SMBHs at high redshift – see, for example, Volonteri, Sikora
& Lasota (2007); Volonteri (2007, 2010); Li (2012); Oka et al. (2017); Kawakatu & Ohsuga (2011); Allen et al. (2006). In the case of a
()− < C+

× < C± system, the inner, accreting, or quiescent torus can be an obscuring inner torus. Matter, from the outer counterrotating torus,
impacts on the corotating inner one, which is screening the accretion from the central SMBH. The possible evolutive paths of such system
have been constrained in the hydrodynamics (HDs) case using constraints on the variation ranges of the RAD parameters and on equation (8)
– Pugliese & Stuchlik (2017a). This treatment is semi-analytic, while the full evolution of the collisional regime has to be considered apart.

More generally, each torus oscillation mode will reflect on the RAD structure adding up to those of other components of the agglomerate,
each torus will contribute with its own specific characteristic. Eventually, this can be also related to QPOs emission – see Montero et al. (2007).
It is therefore necessary to consider the oscillations and instabilities associated with the each component of the aggregate. The introduction
of a purely toroidal and even small magnetic field (considering the magnetic pressure versus gas pressure as defined by the β-parameter) can
have influence on the development of these modes. This is relevant particular for the the torus global non-axis-symmetric modes, because of
the generation of the magneto-rotational instability (MRI) due to the magnetic field and fluid differential rotation. Geometrically thick discs
are subjected to several oscillation modes: a first mode set is constituted by incompressible and axis-symmetric modes, which correspond
to global oscillations for radial, vertical, and epicyclic frequencies together with surface gravity, acoustic, and internal modes, which are
recovered from the so-called relativistic Papaloizou–Pringle (PP) equation – see, for example, Abramowicz & Fragile (2013). On the other
hand, the PP instability (PPI), is a global, non-axis-symmetric instability, which is able to transport angular momentum outwardly in the
disc and therefore able to finally trigger the accretion. The global non-axis-symmetric HD PPI implies also the formation of long lasting,
large-scale structures that may be also tracer for such tori in the in the gravitational wave emission – see, for example, Kiuchi et al. (2011). We
also note that the presence of these modes in complex structures such as those provided by the RAD can be extremely intriguing, considering
the possibility of the emergence from distinct structures belonging to the aggregate, which are characterized by fluids with different physical
proprieties.

Accretion in BH discs is provided by an instability process which is able to trigger the matter overflow in the torus. In the geometrically
HD thick discs, the accretion process is strictly interwoven with the development of the PP instability: the mass-loss in the Roche lobe
overflow regulates the accretion rate in the innermost part of torus. This self-regulated process, on one side, locally stabilizes the accreting
torus from the thermal and viscous instabilities and, on the other side, it globally stabilizes the torus from the PPI (Abramowicz 1981; Blaes
1987). (Note also that the amount of overflow may be also modulated by global discs oscillations.) In fact, global instabilities are affected
by the boundary conditions assumed for the system. In the case of PPI in RAD accreting HD tori, for which the disc inner and outer edges
are well defined and located, the PPI is generally suppressed, stabilizing the discs by the accretion flow driven by the pressure forces across
the cusp, r×, according to the mechanism considered in Section 2. In the case of geometrically thick torus endowed with a (purely) toroidal
magnetic field, considered here with the analytic Komissarov solution, a series of recent analysis shows that torus is violently prone to
develop the non-axisymmetric MRI in 3D, which could disturb this configuration on dynamical time-scales – see Del Zanna et al. (2007);
Wielgus et al. (2015); Das, Begelman & Lesur (2017) and Bugli et al. (2017). The PPI HD instability is entangled with an emerging MRI
which triggers eventually predominant larger modes of oscillation (smaller length scales) with respect to typical PPI modes, and creating a
far richer and complex scenarios for the torus equilibrium properties. Therefore, the presence of a magnetic field contribution in the disc force
balance leads to a more complex situation where the PPI has to be considered in a broader context. More generally, whether or not the HDal
oscillation modes in MHD geometrically thick discs may survive such global instabilities or the presence of a weak magnetic field would
strongly affects these, is still under investigation. The linear development of the PPI can be affected by the presence of a magnetic field and
by a combined growth of the MRI. These two processes can coexist, enter into competition and combine depending on local parameters of
the model (strongness of the magnetic field as evaluated by β parameter). Some studies seem to suggest that under certain conditions on the
strength of the magnetic field and other conditions on the torus onset, this situation can also be resolved in the PPI suppression by the MRI in
the relativistic accretion discs. Using three-dimensional GRMHD simulations, it is also studied the interaction between the PPI and the MRI
considering an analytical magnetized equilibrium solution as initial condition (Bugli et al. 2017). In the HD tori, the PPI selects the large-scale
m = 1 azimuthal mode as the fastest growing and non-linearly dominant mode. In different works, it is practically shown that even a weak
toroidal magnetic field can lead to MRI development, which leads to the suppression of the large-scale modes. Notice also that the MRI in the
discs is important because discs can be locally HD stable (according to Rayleigh criterion), but they are unstable for MHD local instability,
which is linear and independent by the field strength and orientation, and growing up on dynamical time-scales. The torus (flow) is MHD
turbulent due to the MRI. The MRI process induces an angular momentum transfer towards the outer region of the torus using the torque of
the magnetic field lines. In the magnetized tori, as the RAD tori considered here, the accretion is triggered at much earlier times then in the
HD tori, and modes higher then the azimuthal m = 1 mode, typical of HD–PPI tori, emerge together with m = 1. GRMHD investigations
show generally an increase of turbulent kinetic energy in the earlier phases competing with the GRHD ones, consequently accretion is in fact
triggered by the Maxwell stresses instead of the PPI. Furthermore, in the magnetized case there is a broader range of excited frequencies
with respect to the GRHD model. Eventually, the fundamental mechanism responsible for the onset of the PPI does not appear to be the
predominant one or even to arise at all in the MHD torus. In conclusion, these works show that the inclusion of a toroidal magnetic field
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could strongly affect, even with a sub-thermal magnetic field, the PPI. Ultimately, there are suggestions that the action of MRI suppresses
the PPI m = 1 mode growth. This may have a relevant consequence in the double RAD system. MRI stabilizes the discs to PPI with MHD
turbulence. First, in general, MRI is more effective and faster in transport of angular momentum across the disc, and higher accretion rates
were proved to occur in the magnetized models. The evaluation of the accretion rates in the GRHD double RAD systems has been carried out
in Pugliese & Stuchlik (2017c). The emergence of the MRI suggests an accentuation of the effects of the (i) and (iii) instabilities, whereas we
do not expect the principal mechanisms to be changed but rather to accentuate those phenomena connected with energy release and matter
impact. Nevertheless these consideration have to be dealt with the constrains provided in Section 3. Finally, it should be noted that, according
to Fragile & Sadowski (2017), strong toroidal magnetic fields are rapidly suppressed in this tori, in favour of weaker fields (decrease of
β parameter). On the other hand, despite these investigations seem to converge towards a quite clear picture of the MRI–PPI interaction in
geometrically thick discs, although indicative of what the situation could be in general, more analysis is definitely needed to draw a more
conclusive picture of this interaction. The relative importance of MRI and PPI and the interaction of two processes depends in fact on many
factors and conditions. In particular, in the RAD scenario different factors can be determinant: the (turbolent) resistivity, the emerging of
a dynamo effect, the study for counterrotating (retrograde) tori, the disc self-gravity, the gravitational interaction between the disc and the
central Kerr SMBH, and the runaway instability are further aspects which may contribute importantly to the characterization of the ongoing
processes.

5 C O N C L U S I O N S

We studied the effects of a toroidal magnetic field in the formation of multimagnetized accretion tori in the RADs, orbiting around one
central SM Kerr BH. Results constitute evidence of a strict correlation between SMBH dimensionless spin, fluid rotation, and magnetic fields
in RADs formation and evolution towards instability. We showed how the central BH dimensionless spin, the presence of a magnetic field
and the relative fluid rotation and the rotation with respect the central attractor, play a crucial role in determining the accretion tori features.
Specifically, it is proved that toroidal magnetic field and discs rotation are strongly related. This can ultimately have a major influence in the
BH-accretion disc systems, especially during the early stage of tori formation and the final steps of evolutions towards the accretion on to
the spinning BH, a phase where predominant instabilities occur for the accreting torus as well as for the RAD system. Noticeably, we found
that only specific classes of constrained tori, for restrict ranges of magnetic field parameters may form around special SMBHs belonging to
classes identified by their dimensionless spin. This clearly has huge implications for observational point of view, providing indications on the
contexts where to observe such configurations, providing also insight on the different stages of the BH life interacting with its environment
and the torus features. In section 3, we provided a detailed summary of the findings. Only for BHs with spin parameter a �= 0 and in a couple
made by an outer counterrotating torus and inner corotating torus, a double accretion occur, with the outer accreting matter impacting on the
inner ‘screening’ disc, which is also accreting on to the central BH. This mechanism envisages a special ‘interdiscs’ activity with greater
observational potentiality and it poses strict constraints of the current studies of X-ray emission screening in BH environments, restricting
strongly the situations where a screening effect from an orbiting inner tori can be considered (Gilli et al. 2007; Marchesi et al. 2016; Masini
et al. 2016; DeGraf et al. 2017; Marchesi et al. 2017; Storchi-Bergmann et al. 2017). The possibility of tori collision under the effect of the
magnetic field is also enlighten for a system of non-accreting couple and for impact of matter inflow from the outer on to the inner disc.
A modification of the tori rotation law (specific angular momentum), depending on the magnetic field is discussed. This has the advantage
to provide a fairly small, though detailed, template of associated phenomenology, with special regard to situations where collisions and
accretion occur. The counterrotating and � counterrotating cases show significantly that the toroidal magnetic field plays an essential role
in determining the disc structure and stability, showing that also a purely azimuthal field is capable to discriminate the RAD features. From
a methodological point of view, the rewriting of Euler equations in the form of an equation with an (general relativistic) effective potential
allows us to precisely estimate the balance of each component of the forces regulating the disc and the RADs agglomerate. In the choice of a
particular set-up, especially for a magnetized model, there is inevitably a level of arbitrariness in the specification of the model ending up to
narrow the range of situations where this can fit to very specific contexts. The single magnetized torus of RAD is however widely used to fix
up the initial configurations for numerical integration of a broad variety of GRMHD models. Parameterizing the magnetic field through the
two parameters (q,S), we narrowed the range of parameter variation, relating the S parameter values to the system critical points.

In conclusion, the results of our analysis show that the magnetic field has an important role in determining the RADs formation and
instability. In this respect, as we already stressed in Section 3, we should in fact revisit the current analysis of screened X-ray emission, by
considering constraints provided here on the formation of an inner screening torus.
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